Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594370

RESUMO

BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.

2.
iScience ; 27(4): 109315, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38487547

RESUMO

As the only cell type responsible for oxygen delivery, erythrocytes play a crucial role in supplying oxygen to hypoxic tissues, ensuring their normal functions. Hypoxia commonly occurs under physiological or pathological conditions, and understanding how erythrocytes adapt to hypoxia is fundamental for exploring the mechanisms of hypoxic diseases. Additionally, investigating acute and chronic mountain sickness caused by plateaus, which are naturally hypoxic environments, will aid in the study of hypoxic diseases. In recent years, increasingly developed proteomics and metabolomics technologies have become powerful tools for studying mature enucleated erythrocytes, which has significantly contributed to clarifying how hypoxia affects erythrocytes. The aim of this article is to summarize the composition of the cytoskeleton and cytoplasmic proteins of hypoxia-altered erythrocytes and explore the impact of hypoxia on their essential functions. Furthermore, we discuss the role of microRNAs in the adaptation of erythrocytes to hypoxia, providing new perspectives on hypoxia-related diseases.

3.
Cell Death Dis ; 14(11): 735, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951930

RESUMO

Though TDP-43 protein can be translocated into mitochondria and causes mitochondrial damage in TDP-43 proteinopathy, little is known about how TDP-43 is imported into mitochondria. In addition, whether mitochondrial damage is caused by mitochondrial mislocalization of TDP-43 or a side effect of mitochondria-mediated TDP-43 degradation remains to be investigated. Here, our bioinformatical analyses reveal that mitophagy receptor gene FUNDC1 is co-expressed with TDP-43, and both TDP-43 and FUNDC1 expression is correlated with genes associated with mitochondrial protein import pathway in brain samples of patients diagnosed with TDP-43 proteinopathy. FUNDC1 promotes mitochondrial translocation of TDP-43 possibly by promoting TDP-43-TOM70 and DNAJA2-TOM70 interactions, which is independent of the LC3 interacting region of FUNDC1 in cellular experiments. In the transgenic fly model of TDP-43 proteinopathy, overexpressing FUNDC1 enhances TDP-43 induced mitochondrial damage, whereas down-regulating FUNDC1 reverses TDP-43 induced mitochondrial damage. FUNDC1 regulates mitochondria-mediated TDP-43 degradation not only by regulating mitochondrial TDP-43 import, but also by increasing LONP1 level and by activating mitophagy, which plays important roles in cytosolic TDP-43 clearance. Together, this study not only uncovers the mechanism of mitochondrial TDP-43 import, but also unravels the active role played by mitochondria in regulating TDP-43 homeostasis.


Assuntos
Proteínas Mitocondriais , Proteinopatias TDP-43 , Humanos , Proteases Dependentes de ATP/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia , Proteinopatias TDP-43/metabolismo
4.
Int J Oncol ; 63(6)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888748

RESUMO

Extrachromosomal DNAs (ecDNAs), also known as double minutes (DMs), can induce a fast increase in gene copy numbers and promote the development of cancer, including drug resistance. MutS homolog 3 (MSH3), a key protein in mismatch repair, has been indicated to participate in the regulation of DNA double­strand break (DSB) repair, which has been reported to be associated with the formation of ecDNAs. However, it remains unclear whether MSH3 can influence drug resistance via ecDNAs in cancer. In the present study, high MSH3 expression was observed in methotrexate (MTX)­resistant HT29 cells [DM­ and homogeneously staining region (HSR)­containing cells] compared with parental HT29 cells. Additionally, decreased amounts of ecDNAs, HSRs and amplified genes locating on ecDNAs and HSRs were detected following depletion of MSH3 and this could be reversed by overexpressing MSH3 in DM­containing cells. No corresponding changes were found in HSR­containing cells. The present study further verified the involvement of MSH3­regulated DNA DSB repair pathways in the formation of ecDNAs by detecting the expression of core proteins and pathway activity. Furthermore, expulsion of ecDNAs/HSRs was detected and increased frequencies of micronuclei/nuclear buds with dihydrofolate reductase (DHFR) signals were observed in MSH3­depleted DM­containing cells. Finally, changes in MSH3 expression could affect DHFR amplification­derived DHFR expression and cell sensitivity to MTX, suggesting that MSH3 may influence cancer drug resistance by altering the amount of ecDNAs. In conclusion, the present study revealed a novel mechanism involving MSH3 in the regulation of ecDNAs by DSB repair, which will have clinical value in the treatment of ecDNA­based drug resistance in cancer.


Assuntos
Neoplasias Colorretais , Metotrexato , Humanos , Metotrexato/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Reparo do DNA , Aberrações Cromossômicas , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , DNA , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo
5.
Bioinformatics ; 38(19): 4474-4480, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35946527

RESUMO

MOTIVATION: Alternative splicing is an important mechanism to generate transcriptomic and phenotypic diversity. Existing methods have limited power to detect orthologous isoforms. RESULTS: We develop a new method, EGIO, to detect orthologous exons and orthologous isoforms from two species. EGIO uses unique exonic regions to construct exon groups, in which process dynamic programming strategy is used to do exon alignment. EGIO could cover all the coding exons within orthologous genes. A comparison between EGIO and ExTraMapper shows that EGIO could detect more orthologous isoforms with conserved sequence and exon structures. We apply EGIO to compare human and chimpanzee protein-coding isoforms expressed in the frontal cortex and identify 6912 genes that express human unique isoforms. Unexpectedly, more human unique isoforms are detected than those conserved between humans and chimpanzees. AVAILABILITY AND IMPLEMENTATION: Source code and test data of EGIO are available at https://github.com/wu-lab-egio/EGIO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento Alternativo , Software , Humanos , Éxons , Isoformas de Proteínas/genética , Sequência Conservada
6.
Mov Disord ; 37(5): 1059-1063, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278004

RESUMO

BACKGROUND: Aggregation of α-synuclein (oligomeric α-syn) has been considered as the pathological hallmark of Parkinson's disease (PD) and multiple system atrophy (MSA). Studies showed oligomeric α-syn/total α-syn ratio was increased in the saliva of patients with PD, suggesting that seeding activity of salivary oligomeric α-syn may be a novel biomarker for the diagnosis of PD and MSA. OBJECTIVE: This study aimed to evaluate the diagnostic value of salivary α-syn seeding activity in patients with PD and MSA. METHODS: A total of 75 patients with PD, 18 patients with MSA, and 36 nonneurodegenerative healthy control subjects underwent salivary α-syn real-time quaking-induced conversion (RT-QuIC) assay. RESULTS: Salivary α-syn RT-QuIC assay distinguished patients with PD with 76.0% sensitivity (95% confidence interval [CI], 66.1-85.9) and 94.4% specificity (95% CI, 86.6-100.0). RT-QuIC assay sensitivity reached 61.1% (95% CI, 36.2-86.1) in patients with MSA. No significant differences were observed in the diameter of salivary α-syn fibrils examined by electron microscopy and in thioflavin T fluorescence intensity of salivary α-syn fibrils detected by RT-QuIC assay between patients with PD and MSA. Notably, the lag phase of RT-QuIC assay from patients with PD was significantly shorter than that of patients with MSA, which might be clinically applicable to the discrimination between PD and MSA. CONCLUSIONS: Salivary α-syn seeding activity may serve as a novel biomarker for the clinical diagnosis of PD and MSA.© 2022 International Parkinson and Movement Disorder Society © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Biomarcadores , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , alfa-Sinucleína
7.
Int J Cancer ; 144(5): 1037-1048, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30070702

RESUMO

Gene amplification, which involves the two major topographical structures double minutes (DMs) and homegeneously stained region (HSR), is a common mechanism of treatment resistance in cancer and is initiated by DNA double-strand breaks. NHEJ, one of DSB repair pathways, is involved in gene amplification as we demonstrated previously. However, the involvement of homologous recombination, another DSB repair pathway, in gene amplification remains to be explored. To better understand the association between HR and gene amplification, we detected HR activity in DM- and HSR-containing MTX-resistant HT-29 colon cancer cells. In DM-containing MTX-resistant cells, we found increased homologous recombination activity compared with that in MTX-sensitive cells. Therefore, we suppressed HR activity by silencing BRCA1, the key player in the HR pathway. The attenuation of HR activity decreased the numbers of DMs and DM-form amplified gene copies and increased the exclusion of micronuclei and nuclear buds that contained DM-form amplification; these changes were accompanied by cell cycle acceleration and increased MTX sensitivity. In contrast, BRCA1 silencing did not influence the number of amplified genes and MTX sensitivity in HSR-containing MTX-resistant cells. In conclusion, our results suggest that the HR pathway plays different roles in extrachromosomal and intrachromosomal gene amplification and may be a new target to improve chemotherapeutic outcome by decreasing extrachromosomal amplification in cancer.


Assuntos
Cromossomos/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes/genética , Recombinação Homóloga/genética , Metotrexato/farmacologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Aberrações Cromossômicas , Quebras de DNA de Cadeia Dupla , Células HT29 , Humanos
8.
Cell Death Dis ; 9(3): 341, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497033

RESUMO

Sei-1 is a potential oncogene that plays an important role in promoting genomic instability. Double minute chromosomes (DMs) are hallmarks of gene amplification and contribute to tumorigenesis. Defects in the DNA double-strand break (DSB) repairing pathways can lead to gene amplification. To date, the mechanisms governing the formation of DMs induced by Sei-1 are not fully understood. We established DMs induced by Sei-1 in the NIH-3T3 cell line. RNA-sequencing was used to identify key characteristics of differentially expressed genes. Metaphase spreads were used to calculate DM numbers. Immunofluorescence was employed to detect γH2AX foci. Western blot and Akt pathway inhibition experiments were performed to reveal the role of the PI3K/Akt/BRCA1-Abraxas pathway in Sei-1-induced DMs. Luciferase reporter assay was employed to explore the regulatory mechanisms between Sei-1 and BRCA1. DM formation was associated with a deficiency in DSB repair. Based on this finding, activation of the PI3K/Akt/BRCA1-Abraxas pathway was found to increase the DM population with passage in vivo, and inhibition resulted in a reduction of DMs. Apart from this, it was shown for the first time that Sei-1 could directly regulate the expression of BRCA1. Our results suggest that the PI3K/Akt/BRCA1-Abraxas pathway is responsible for the formation of DMs induced by Sei-1.


Assuntos
Proteínas de Transporte/metabolismo , Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Fibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Transporte/genética , Cromossomos/metabolismo , Reparo do DNA , Fibroblastos/enzimologia , Amplificação de Genes , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transativadores/genética , Fatores de Transcrição , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...